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Nonparametric nearest neighbor based
empirical portfolio selection strategies

L aszb Gyorfi, Frederic Udina, Harro Walk

Summary: In recent years optimal portfolio selection strategies for sequential investment have
been shown to exist. Although their asymptotical optimality is well established, finite sample prop-
erties do need the adjustment of parameters that depend on dimensionality and scale. In this paper
we introduce some nearest neighbor based portfolio selectors that solve these problems, and we
show that they are also log-optimal for the very general class of stationary and ergodic random pro-
cesses. The newly proposed algorithm shows very good finite-horizon performance when applied
to different markets with different dimensionality or scales without any change: we see it as a very
robust strategy.

1 Introduction

In a financial market, on the basis of the past market data, without knowledge of the un-
derlying statistical distribution, a portfolio selection has to be chosen for investment of the
current capital in the available assets at the beginning of the new market period. The goal is
to find a portfolio selection scheme such that the investor's wealth grows on the average as
fast as by the optimum strategy based on the full knowledge of the underlying distribution.
Nonparametric statistical methods allow to construct asymptotically optimal strategies for
sequential investment in financial markets.

Throughout the paper it is assumed that the vectors of daily price relatives (return vec-
tors) form a stationary and ergodic process. Then a log-optimal rate of growth exists and
is achieved with probability one by a strategy based on the knowledge of the underlying
distribution (Algoet and Cover [2]). Even in the more realistic case that only the past data
are available, with no knowledge of the underlying distribution, selection schemes with
log-optimal growth rate exist (Algoet [1]). Such investment schemes are callee-

sally consistent. Gyorfi and Schfer [7] constructed universally consistent schemes using
histograms from nonparametric statistics, and@y Lugosi, and Udina [6] using kernel
estimates. In this paper a new universal strategy, called nearest neighbor strategy, is pro-
posed which not only guarantees a log-optimal growth rate of capital for all stationary and
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ergodic markets, but also has a good finite-horizon performance in practice, and, as main
novelty, is very robust in the sense that no design parameter tuning is needed to guarantee
this good finite-horizon performance. The reason may be that nearest neighbor methods
can be interpreted as well tractable kernel methods with data-based local choice of band-
widths. In [8], we present a numerical comparison of some empirical portfolio strategies
for NYSE and currency exchange data, according to which the nearest neighbor based
portfolio selection outperform the histogram and the kernel strategy.

The rest of the paper is organized as follows. In Section 2 the mathematical model is
described. In Section 3 a nearest neighbor (NN) based nonparametric sequential investment
strategy is introduced and its universal consistency is stated. The proof of this theoretical
result (Theorem 3.1) is given in Section 4.

2 Mathematical model

The following stock market model has been investigated, among others, by Algoet and
Cover [2]. Further references can be found ind8ly Lugosi, and Udina [6]. Also the
monographs of Cover and Thomas [4], and Luenberger [9] deal with the concept of log-
optimality below.

Consider a market of assets. The evolution of the market in time is represented by a
sequence of return vectoxs, x», . . . with values inR<, where thej-th componenﬂ;(]) of

the return vectok, denotes the amount obtained after investing a unit capital in-the
asset on the-th trading period. That is, thgth componemrﬁf) > 0 of x,, expresses the
ratio of the closing and opening prices of asgdtiring then-th trading period.

The investor is allowed to diversify his capital at the beginning of each trading period
according to a portfolio vectds = (b, ...b@). Thej-th component’) of b denotes

the proportion of the investor’s capital invested in agséﬁhroughout the paper we assume
that the portfolio vectob has nonnegative components WEIj = 1. It means that

the investor neither consumes money nor deposits new money and that no transaction costs
appear. The non-negativity of the componentdbaheans that short selling and buying
stocks on margin are not permitted. Denotefhythe simplex of all vectord € R% with
nonnegative components summing up to one.

Let .Sy denote the investor’s initial capital. For the first trading period, the portfolio vector
b, is constant, usuallyl /d, ...1/d). Then at the end of the first trading period the investor’s
wealth becomes

S ij) ) S() bl,X1>

where(-, -) denotes inner product. Fgr < i we abbreviate bycj. the array of market
vectors(x;, ..., x;). Let S,_; be the wealth at the end of the— 1-th trading period, then
it is the initial capital for then-th trading period, for which the portfolio may depend on
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the past return vectordi, = b, (x'). Therefore we get by induction that

S, = Sh_1 <bn(x7f_1) , Xn> =5 H <bi(xi_1) , xi> = Spexp {Zlog <bi(x§_l) , xl>} )
i=1 1=1

This may be written as;, exp {nWW,(B)}, wherelV,,(B) denotes thaverage growth rate
of the investment strated® = {b,, }2° ,:

Wa(B) = - > log (bixi ™), x,)

The goal is to maximize the wealt$), = S,,(B) or, equivalently, maximize the average
growth ratelV,,(B).

We assume that the sequence of return vectors,, . . . are realizations of a random pro-
cessXy, X, ... such that{ X, }>°_ is a stationary and ergodic process. Besides a mild
moment condition on the log-returns, no other distribution assumptions are made. Accord-
ing to Algoet and Cover [2], for the so-called conditional log-optimum investment strategy
B* = {b} }> , defined by

b (X7!) = argmaxE {log (b(X}™"), X,,)| X7~}
b(-)
one has
. 1.5,
limsup —log — < 0 almost surely,

nooo N Sk

for each competitive stratedy, whereS* = S, (B*) andS,, = S,,(B). Furthermore

1
lim —log S’ = W™ almost surely,

n—oo M,

where

b()
is the maximal possible growth rate of any investment strategy. The conditional log-
optimum investment strategg* depends upon the distribution of the stationary and er-
godic procesg X, }>2 ;. Surprisingly, according to Algoet [1], there exists investment
strategyB on the basis of past return data such that

W*=E {max]E {log (b(X~L.), Xo)| Xiio}}

1 ~
lim —log S, (B) = W* almost surely,
n—oo M,
i.e., having the same best asymptotic growth rat®asfor each stationary and ergodic
processeg X, }>° . Such investment strategies are calledversally consistent with re-
spect to a class of all stationary and ergodic processes.
The investment strategy of @yfi and Sclafer’s [7] is, as Algoet’s [1] strategy, histogram

based. Ata given time instantone looks for correspondingly discretizkduplemﬁ:i_jﬂ
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of return vectors in the whole history of the market which are identical to the discretized
return vector'~,. Such time instant — j is called matching time. Then design a fixed
portfolio vector optimizing the return for the trading periods following each matching. For
different integerk > 0 and histogram design parameter, mix these portfolios (see (3.3)
below). Gyorfi, Lugosi, and Udina [6] modified this strategy by use of kernels (*“moving-
window”). In both papers, universal consistency of the strategies with respect to the class
of all ergodic processes such | log XV)|} < oo, for j = 1,2,...d, is shown.

3 Nearest neighbor based strategy

Define an infinite array of elementary strategies (the so-called expfté) = {h*9(-)},
wherek, ¢ are positive integers. Just like befofeis the window length of the near past,
and for eaclf choosep, € (0, 1) such that

elim pe = 0. (3.1)
Put R
= |pen].

At a given time instant:, the expert searches fo[tlémearest neighbor (NN) matches in
the past. For fixed positive integets? (n > k + ¢ + 1) and for each vectas = s, of

dimensionkd introduce the set of thénearest neighbor matches:

JEO = £ | +1 < i < nsuch thate’"! is among theé NNs ofs in x*, ..., x" "}
n,s i—k 1

» Pn—kJ-

Define the portfolio vector by

bk (x7~!,s) = arg max H (b, x;).
beAy

ie {0
We define the expeti“*) by
h®0 (xn=1) = pEO (xn-1, x4, n=12... (3.2)

That is, h"" is a fixed portfolio vector according to the return vectors following these
nearest neighbors.

Now one forms a “mixture” of all experts using a positive probability distributigp,}

on the set of all pair$k, ) of positive integers (i. e. such that for &ll¢, ¢, , > 0). The
investment strategy simply weights the exp&ft§*) according to their past performances
and{qx ¢} such that after theth trading period, the investor’s capital becomes

Sp =Y QS (H®), (3.3)
k.t

wheresS,, (H*") is the capital accumulated afteperiods when using the portfolio strat-
egyH*9 with initial capital S, = 1. This may easily be achieved by distributing the initial
capitalS; = 1 among all experts such that expE*-*) trades with initial capitad;, ,Sp.
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We say that a tie occurs with probability zero if for any veater st the random variable
X7 — s
has continuous distribution function.

Theorem 3.1 Assume (3.1) and that a tie occurs with probability zero. The portfolio
schemeB"N is universally consistent with respect to the class of all stationary and ergodic
processes such tha{ | logXé”|} <oo,forj=1,2,...d.

4 Proofs

The proof of Theorem 3.1 uses the following three auxiliary results. The first is known as
Breiman’s generalized ergodic theorem [3].

Lemma 4.1 (BREIMAN [3]). LetZ = {Z;}>, be a stationary and ergodic process. For
each positive integer let 7" denote the operator that shifts any sequefice, z_, 2, z1, . . .}
by i digits to the left. Letf, f>,... be a sequence of real-valued functions such that
lim, . fn(Z) = f(Z) almost surely (a.s.) for some functignAssume that sup,, | f,.(Z)| <
oo. Then

N Tz —Ef(Z)  (as)

n—oo M, —
The next two lemmas are due to Algoet and Cover [2, Theorems 3 and 4].

Lemma 4.2 (ALGOET AND COVER([2]). LetQ,caui-} b€ afamily of regular probability
distributions over the sék? of all market vectors such that

E{|log Ugj)|} < o0

for any coordinate of a random market vecldy, = (US), e U,(Ld)) distributed according
to Q... In addition, letB*(Q,,) be the set of all log-optimal portfolios with respect@y,,
that is, the set of all portfoliob that attain

maxpen, E{log (b, U,)}. Consider an arbitrary sequends, € B*(Q,,). If

Q. — Q. weaklyas: —

then, forQ..-almost allu,
lim (b, , u) — (b*, u)

n—oo

where the right-hand side is constantlasranges oveB*(Q..).

Lemma 4.3 (ALGOET AND COVER [2]). Let X be a random market vector defined on a
probability space 2, F, P) satisfyingE{| log X )|} < oco. If F is an increasing sequence
of sube-fields of 7 with

fk / foo g F7
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then
E {mng [log (b, X) ]fk}} S E {mng log (b, X) |5Eoo]}

as k — oo where the maximum on the left-hand side is taken ovefFalimeasurable
functionsb and the maximum on the right-hand side is taken overfalltmeasurable
functionsb.

Proof of Theorem 3.1.The proof is based on techniques used in related prediction prob-
lems, see Gyrfi and Schfer [7], Gyorfi, Lugosi, and Udina [6]. We need to prove that

lim inf W,,(B) = liminf S log S,(B) > W* (a.s.)

n—oo n—oo 1

Without loss of generality we may assuifig= 1, so that

W,(B) — %log S,(B)

1
= e (Z Qk,eSn<H<’“’”>>

k.t

1
= Laup g+ 1og 5,0

1
= sup (Wn(H(k’E)) + 08 Gt QM) .

k0 n

Thus

1
liminf W,,(B) > liminfsup (Wn(H(k’E))—|— og%,e)

n—00 n—00 Ly n

1
> sup lim inf (Wn(H(k,e)) T M)

kg N0 n

— sup lim inf W, (H*9). (4.1)
kg 7100
The simple argument above shows that the asymptotic rate of growth of the stiategy
is at least as large as the supremum of the rates of growth of all elementary strategies
H®", Thus, to estimatéim inf,_.., W,,(B), it suffices to investigate the performance of
expertH®*% on the stationary and ergodic market sequeKgeX_;,X_,,.... First let
the integers:, ¢ and the vectos = s~; € R% be fixed.
Fix p, € (0,1). Put )
{=|pej].

Let Ss, denote the closed sphere centereshith radiusr. Let the interval

Rio(s) = [rye(8), i e(s)]
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be the set of values, ,(s) such that
P{XZ}, € Ssrpis)} = Pr-
Since tie occurs with probability zero, such interval exists. Because of (3.1),
Jim 77(s) = 0.
Forj > k + / + 1, introduce the set
JE9 = fi; —j 4+ k+1 < i < 0such thaX!"} is among the’ NNs of s
inXZ),..., X/
For all Borel setA, IetIP’ k e) denote the (random) measure defined by

Ziej(k o Iixeat
755"

(k) _
IP)j,s {A} -

We will show that for alls, with probability one,

k,l *
P — Pryyjxtosjcrpte) = Po* (4.2)

2,8

with arbitraryry ,(s) € Ry.(s), asj — oo in terms of the weak convergence. To see this,
let f be a bounded continuous function defined®sh Then we prove that

/f dx) — /f )P:ED(dr)  almost surely, ag — oo.
Notice that . 3
X!~} is among the NNs of s in X}, ..., X7t}
if and only if
IXi=L — s|| < [[(the-th NN of s in X1, ..., X 7H5) — g||.
Moreover

|(thel-th NN of s in X}, ..., XZ2T) — 5|

tends to the seR; ,(s) (j — oo) a.s. by the ergodic theorem in context of empirical
measures, thus almost uniformly by Egorov’s theorem. Therefore, for arbitrar§ and
0 > 0 anigy exists such that with probability 1— 6 for —: > i, the following implications
hold: .

X2k — sl < 7hul(s) — €
implies that

X!~} is among the NNs of s in X7}, ..., X7,
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which implies that ’
IXiZk = sll < i(s) +e

Introduce the sets

TR0 = {i =+ k1< <0, [|XIT) —s|| < r(s) — €}

and

JED = k41 <i <0, XL —s| < ry(s) + ).

]75

Without loss of generality, assume that- 0. The ergodic theorem implies that

77 et f(Xi) B{f(Xo) x-1 —gj<ry 1))

lim = =
oo L) P{IXT) — sl < 7iy(s) + ¢}
a.s. and with probability> 1 — o
1
E{f(Xo) gx-1 —sli<r) ()-e}) R 2iegten J(XG)
— : < liminf T
PXT —sll < rig(s) e} = oo L0
] j+k Zie](kVZ) f(XZ)
< IIEILS;IOIP L| ke)|
k S
e g FOX)
< lim (k0)
o T

E{f(XO) {||X_ 7s||<r (S)Jre}}
P{IXZ; —sl < Tk,z( s) — €}

a.s. by ergodic theorena.— 0 yields that with probability> 1 — ¢

1
y g ZiEJ](kS’é) f(Xz) E{f(XO)[{“X:}C*S”STk,Z(S)}}
im : =

ks PUXZL = sl < reals)}

for arbitraryry ¢(s) € Ry(s). Thus a.s.

g 2icso f(Xi)

Im I,
e I

= E{f(Xo) | X % —s| <7rels)},

and (4.2) is proved. Recall that by definitidst**) (X 1_ ,s) is alog-optimal portfolio with
respect to the probability measdPéCf . Letbj ,(s) denote a log-optimal portfolio with

respect to the limit distributio®;*”. Then, using Lemma 4.2, we infer from (4.2) that,
asj tends to infinity, we have the almost sure convergence

lim <b H X] j7S) ; X0> = <bz,z(s)a X0>

Jj—oo
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for IP’Z(’“’@-aImost alkx, and hence foPx, -almost allx,. Sinces was arbitrary, we obtain

lim (b (X1 X7, x0) = (b,,(X1), x0)  (a.s.) (4.3)

j—o0
Next we apply Lemma 4.1 for the function
fix2) = log (W59 (xh) , x0) = log (b™9 (x1;, x74) , %o)
defined onx>_ = (...,x_1,Xp, X1, ...). Note that

Y

d
filX=) = }log <h(k,€)(Xf_1i) , X0>} < Z ‘log X(()J')

Jj=1

which has finite expectation, and
fiX%) = (br(XZh) s Xo)
almost surely ag — oo, by (4.3). Asn — oo, Lemma 4.1 yields

1 — ‘
W, (H®D) = ﬁZf@-(T‘X‘i"oo)
=1

= Y lor(hI(X{), X))
=1

— E {log <b’,;’£(X:,1€) , X0>}
= €Ky (a.s.)

Therefore, by (4.1) we have

n—oo

lim inf W,,(B) > sup €4 > sup limeinf oY (a.s.)
k¢ k

and it suffices to show that the right-hand side is at [8ast The rest of the proof is similar
to the end of the proof in [6], so the reader may skip it.
To this end, define, for Borel sets B C R<,
ma(z) = P{X, € A|X_} =z}
and
we(B) = P{X_} € B}.
Then for anys € supportyuy), and for allA,

PLE0(A) = P{Xoe AX"E—sl| < rusls)}
P{Xo € A, X" = 5| < resls)}
PIXL sl < ree(s)}
1
- [ )
S,

/J/k‘(SSJ"k,Z(S)) s, 0(s)
— mA<S) = P{XO € A’X:Ii = S}
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as/ — oo and foru-almost alls by the Lebesgue density theorem (see [5, Lemma 24.5]),
and therefore y
IP;(:’;(A) — P{X, € AIX_}}

as!? — oo for all A.
Thus, using Lemma 4.2 again, we have

lim inf €y = lim €k
L ’ L

= E{log <b* X0>}
(wherebj (- ) is the log-optimum portfolio with respect
to the conditional probabilitP{ X, € A|X";})

= E{E{log(b}(X}), Xo)| X}}}

- E {I{)lg;{E {log (b(XZ}), Xo)| X_Ilﬂ}}

To finish the proof we appeal to the sub-martingale convergence theorem. First note that
the sequence

def

Y, € E{log (bj,(XZ}), Xo)| X, } = maX]E{log (b(XZ}), Xo)| XT3}

of random variables forms a sub-martingale, thaEi$Y}.:|X_, } > Y. To see this, note
that

E{Yi41|X 24}

]E{]E{log(bzﬂ X_llc 1) X0>‘X_11¢ 1}‘X_llc}

> E{]E{log<ka X0>\X LX)
= E{log(by(X X0>}X—k 1}

This sequence is bounded by

nt}(a;{E {10g <b(X:<1>o) ) X0>’ X:<1>o}

which has a finite expectation. The sub-martingale convergence theorem (see, e.g., Stout
[10]) implies that this sub-martingale is convergent almost surelysapge; is finite. In
particular, by the submartingale property,s a bounded increasing sequence, so that

supe, = lim € .
k k—oo

Applying Lemma 4.3 with ther-algebras

o (X:,ﬁ) So (X:io)
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yields
supej, = lim E {Hﬁng {log (b(XZ}), Xo)| X_i}}
- E {Igg)m {log (b(X=L), X,)] X:io}}
= W*
and the proof of the theorem is finished. |
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