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Abstract

Any electoral system has an electoral formula that converts vote

proportions into parliamentary seats. Pre-electoral polls usually fo-

cus on estimating vote proportions and then applying the electoral

formula to give a forecast of the parliament's composition. We here

describe the problems arising from this approach: there is always a

bias in the forecast. We study the origin of the bias and some methods

to evaluate and to reduce it. We propose some rules to compute the

sample size required for a given forecast accuracy. We show by Monte

Carlo simulation the performance of the proposed methods using data

from Spanish elections in last years. We also propose graphical meth-

ods to visualize how electoral formulae and parliamentary forecasts

work (or fail).

Keywords: d'Hondt rule, electoral formula, forecasting election results,

Monte Carlo, sample size, seats apportion.

1 Introduction

Designing and conducting electoral polls have several well known steps. We

focus on forecasting the �nal parliamentary composition. Indeed, front-page

news about any pre-electoral poll usually includes predicted parliamentary

composition. In this paper we study the problems related to the estimation

of parliamentary composition from a statistical point of view.
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Let K parties be contending for a total of M seats in a parliament. Let

C be the number of provinces or electoral regions, and letMj be the number

of seats decided by province j, with
P

jMj =M seats, the parliament total.

After the elections, the proportion of valid votes fij obtained by party i in

province j is known. These proportions are used by the electoral formula in

use (see section 3 for an analysis of some of the more usual ones) to apportion

the seats among the parties. Letmij be the number of seats obtained by party

i in province j.

The e�ect of di�erent electoral formulae from the political point of view

is a well studied question (see Cox (1997), Taagepera and Soberg (1989) or

Benoit (2000)). But to our best knowledge, the statistical problems related

to parliament forecasting have not been fully investigated. Brown and Payne

(1985) describe the methods used by the BBC for election night forecasting

of the 1983 British general election. Methods are very speci�c because of the

special electoral rules in Britain: each of a large number of constituencies (650

in 1983) decides a seat by the majority rule. Bernardo (1984) describes a

Bayesian hierarchical model used in the Spanish general elections of October

1982. It focuses on forecasting the proportion of votes and does not study

in depth the problems related to forecasting number of seats apportioned to

each party we study here.

A typical pre-electoral poll tries to estimate the proportions fij by �xing a

total sample size N and distributing it among the provinces. The distribution

rule is usually somewhere between one consisting of the simple division nj =

N=C and the proportional distribution according to the number of potential

voters in each province. After conducting the poll, the sample proportions bfij
will be the estimators for the unknown proportions. From these estimated

proportions, the estimated number of seats cmij can be computed through

the electoral formula in use.

The main point of this paper is to show that when estimating parliamen-

tary composition by adding up the cmij, a signi�cant bias appears. We show

it both graphically and numerically. We design and describe a graphical

method based on principal components to visualize the forecast of several

electoral polls once the �nal results are known.

The bias in the prediction of the parliamentary composition depends on

the actual proportions of votes (unknown when the poll is being conducted)

and the sample size used in each province. In most cases, the bias vanishes

whit increasing sample size, but there are some critical values of the propor-

tions that make forecasting the results impossible: the simplest case occurs

when two parties have each 50% of voters and they are contending for a seat.

We also study methods for distribution of sample sizes among provinces

both using a pilot poll to obtain a �rst estimate of the unknown proportions
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and without using it. Using data from electoral polls and elections in Spain

from the year 2000, and in Catalonia for the regional parliament in 1999, we

study by Monte Carlo simulations the performance of the proposed methods.

We do not address at all in this paper the non-sampling errors that se-

riously a�ect polls: miss-responses, abstention detection and no answers or

missing data. We will see that even under ideal sampling conditions there re-

main di�cult and interesting problems in the estimation of the parliamentary

composition.

In the next section we describe the main problem, the bias in the parlia-

mentary composition forecasts, using a gaphical method we have designed.

The device can also be used to show the discrepancy between the forecast of

any real electoral poll and the ones resulting from Monte Carlo simulation.

In Section 3 we brie
y describe and analyze the most commonly used elec-

toral formulae and we study the origin and consequences of the estimation

bias.

In Section 4 we study the problem of choosing a sample size for each

province to achieve a pre�xed level of error estimation. After a summary of

conclusions, the mathematical details are included in the Appendix.

2 Visualizing results and polls

To represent graphically the results of some parliament elections, and to

compare them with the forecast of pre-electoral poll we use a principal com-

ponents (PC) based biplot. We illustrate the technique using data from the

aforementioned election results. Starting from the known �nal results, we

use the computer to generate B samples (typically B =2,000) drawn from C

multinomial distributions, one for each province. We use the same sample

sizes as some of the published pre-electoral polls that give enough technical

details. Applying the electoral formula to each simulated proportions we

obtain a forecasted parliament, a virtual parliament, a vector of K integers.

Using the two main principal components of this cloud of points we can rep-

resent it the better way in a plane (see Figures 1 and 2). There is a relevant

pattern in the cloud of points: feasible parliaments have integer coordinates

that add up to M so they are arranged in some hyperplanes that are still

visible when projected to our PC plane. Actually, for better visualization we

only draw some of the points (for instance 500) randomly selected.

In the same graphic we represent the vectors corresponding to the parties

by projecting the variable vectors onto the representation plane. We draw

them with their origins at the average point of the cloud of virtual parlia-

ments. By also drawing the point that corresponds to the real parliament, we
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Figure 1: Biplot based on principal components that shows polls and results

for Catalan parliamentary elections in 1999, in terms of seats apportioned to the

parties. Points in the cloud represent (a sample of) 2,000 parliaments obtained

from simulated polls based on the �nal results. The arrows, originating at the

point average forecasted parliament, represent the direction favouring the respec-

tive parties. A cross, located above the \PP" label, marks the position of the real

parliament showing the bias of the estimation. The polygons represent the forecast

given by polls published in several newspapers a week before the elections.
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show visually that there is a signi�cant bias in the estimation of parliamen-

tary composition. In the cases depicted in the �gures, one can evaluate the

bias roughly as being between one half and one third of the sample variability.

To incorporate the parliaments forecasted by pre-electoral polls we use

the con�dence intervals they give for the number of seats forecast for each

party. We compute all the feasible parliaments that �t the given con�dence

intervals and draw the convex hull of the projected points. If any of the

polls used a di�erent global sample size from the one we used to generate the

virtual parliaments we correct the distance to the origin of the corresponding

polygon accordingly.

El PeriódicoIU

PSOEPP

La Vanguardia
El País

Figure 2: This graphic is similar to the one in Figure 1. It shows polls and results

for general elections in Spain for the year 2000 parliament. Arrows originate at

the centre of the cloud formed by parliaments obtained from simulated polls. To

the left of this point, the real parliament has been marked with a small cross. The

bias is apparent. Some published pre-electoral polls are displayed as in Figure 1,

while others are too far away to be included.

3 Electoral formulae: an estimation bias prob-

lem

We concentrate here on a single province, where K parties obtained pro-

portions of votes (f1; f2; : : : ; fK) and there are M seats to be apportioned

among them. An electoral formula is a rule for translating these proportions

to a seat allocation (m1; m2; : : : ; mK) such that
P
mi = M . Most electoral

formulae (see Taagepera et al. (1989)) are proportional rules that attempt

to make the averages fi=mi similar among the parties. The most frequently

used proportional rules work as follows.
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1. Exclude from the seat distribution parties that have vote proportions

less than a �xed threshold � � 0.

2. Choose a non-decreasing sequence of denominators d = (d1; d2; : : : dM).

3. Form all the K �M quotients fi=dj, i = 1 : : :K, j = 1 : : :M .

4. Select the M largest quotients and give the corresponding parties a

seat for each of its largest quotients.

The choice of the denominator sequence d controls the proportionality of

the rule (see Benoit (2000) for a study of proportionality). As an extreme

case, if d = (1; 1; 1; : : :) the rule gives all the seats to the most voted party,

it has no proportionality at all. The so called d'Hondt rule (PR-HR) takes

d = (1; 2; 3; : : :). It is the rule used in Spain (with � = 0:03) and other

European countries. It is also used in the U.S. to distribute congress seats

among states according to population size. It gives more chances of obtaining

seats to medium-sized parties and less to small parties. The Sainte-Lag�ue

rule (PR-SL) takes d = (1; 3; 5; 7; : : :) and makes it easier for small parties to

obtain a �rst seat. Among the commonly used formulae, the modi�ed Sainte-

Lag�ue rule (PR-MSL) has maximum proportionality, see Beno��t (2000). It

takes the sequence d = (1:4; 3; 5; 7 : : :). To ensure that every party having

more votes than � has at least a seat, one could use the sequence dj =

1 +M(j � 1). In the rest of the paper we use the d'Hondt rule (except in

Figure 5 for comparison) but a similar analysis could be performed using any

other rule.

In Appendix A.1 we include a mathematical formulation of these propor-

tional rules and in Figures 3 to 4 we give a graphical idea about how they

work. In Figure 3 we show the case of two parties contending for �ve seats.

The horizontal axis is proportion of votes for party 1, party 2 having the

rest. It can be seen that there are some values of f1 that make the num-

ber of seats jump, and that there are intervals where the seat allocation is

constant. The rule used there is PR-HR. Figure 4 shows the seat allocation

when there are three parties in the game. The triangle depicted is the R3

simplex f(f1; f2; f3) 2 R3jf1 + f2 + f3 = 1g. So each point corresponds to a

feasible combination of vote proportions. This is a so-called ternary diagram

or barycentric coordinate space, see Aitchison (1986). Triangular coordinates

are in use: a given point has proportions measured by the distances to the

sides of the triangle. It can be seen that the regions of constant seat al-

location (we name it constant seat allocation cells, CSA-cells) are convex

polygons with 4 to 6 sides. See Appendix A.1 for mathematical details.
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Figure 3: In a province like C�aceres in the Spanish elections, in 2000, only two par-
ties were e�ectively contending for �ve seats. The horizontal axis is the proportion

of votes for one of them. On the vertical axis, the number of seats apportioned to

it. For a population proportion of 52%, the real result there, the small bell-shaped

curve shows the sample proportion distribution for a sample size of ni = 199, as

used in one of the main electoral polls.
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Figure 4: Three parties are contending for four seats. Points in the triangle

correspond to three proportion of votes adding up to one, in triangular coordinates.

Polygons shown in the triangle are sets of proportions with constant seat allocation

(CSA cells) labeled with the number of seats for parties A, B, and C using the

d'Hondt rule. The marked point is for the results in Ourense, Spanish elections

2000. It gives three seats to party A, one to party B and none to C.
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Figure 5: The graphs are similar to Figure 4 but di�erent seat apportioning rules

are in use. On the left we use the Sainte-Lag�ue rule and on the right the modi�ed

Sainte-Lag�ue rule. Note that the main di�erence is the way small and medium

size parties are favoured.

3.1 The bias in estimating the number of seats

The origin of the bias shown in �gures 1 and 2 can be clearly seen in simple

cases. When there are only two parties, as in Figure 3, if the real proportion

in favour of the �rst one is close to one of the jumps, a signi�cant part of

the samples drawn from the population would predict the wrong number

of seats. In the situation depicted in Figure 3, as many as 28:6% of the

samples would predict two seats, so the expected number of seats predicted

by sampling would be 0:714�3+0:286�2 = 2:714 with a bias of �0:286. We

use here the normal approximation to the binomial distribution and similar

approximation to the multinomial distribution in the following discussion.

Figure 6 shows a case where there are three parties with proportions of

votes 49:7%; 39:3%; and 11:0%. The point is very close to two edges of its

CSA-cell (the one that is below, corresponding to 5 seats for A, 3 for B and

one for C). Sampling from these proportions is very unstable from the point

of view of seats allocation : more than 50% of the samples would give a wrong

forecast. The ellipses centered on the point with these coordinates are level

curves of the joint distribution of the sample proportions when the sample

size is ni = 337 (used by one of the main electoral polls published before

the elections). Levels have been chosen so that the probabilities inside the

ellipses are, respectively, 0:90; 0:95; 0:99. These level curves can be computed

using the �2 distribution with two degrees of freedom, see Section 4.2. Most

of the samples give proportions that fall outside the correct constant seat
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Figure 6: The graphic shows the case of Asturias in Spanish elections and

polls in the year 2000. Triangle and polygons are as in Figure 4. The ellipses

are level curves of the sample proportion distribution for sample size n = 337

and several population proportion values. Around the marked point (�nal

results in Asturias) we draw the level curves containing 0:90; 0:95; and 0:99

of the probability. The other ellipses contain 0:99 of the probability for other

values of the population proportions.
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allocation cell. The average predicted seat allocation will give more seats to

parties B and C, and less to party A than the ones apportioned according to

the real proportion of votes.

The magnitude of the bias vector, de�ned as the di�erence between av-

erage seat allocation by the samples and real seat allocation, depends on the

sample size but mainly on the real proportion of votes: If the point with real

proportions falls close to the centre of its CSA-cell, a small sample size can

be enough to get a good forecast, but if it falls close to any cell edge, a bigger

sample size is needed. In the singular cases when these proportions fall on

a cell edge, the bias will not disappear even if the sample size increases to

in�nity.

This is a serious problem for parliamentary forecasting. There are some

opinion poll �rms that conclude that parliamentary forecasts ought never

be published. Others publish them giving some con�dence intervals for the

seats apportioned to each party; in the examples we have studied, however,

the con�dence level is not clearly stated. Good con�dence intervals could be

computed by simulation as described in Section 3.3.

3.2 Estimating the bias by the parametric bootstrap

One possible way to correct the bias or to compute con�dence intervals when

the real proportions are unknown is by the parametric bootstrap. We apply

this technique described in Efron and Tibshirani (1993) in the following way.

1. Let S0 be an electoral poll conducted in every province with sample

sizes ni for a total sample size of N . Let bfij; i = 1 : : :K; j = 1 : : : C

be the resulting sample proportions for each party in each province.

Let cmij be the number of seats apportioned to party i in province j

according to these results.

2. Repeat B1 times:

(a) For each province, draw a sample S1, using the same sample sizes

as in S0, from a multinomial distribution with proportions cfij.
(b) Use the resulting sample proportions to apportion seats cm�

ij.

3. Using the bootstrapped seats cm�

ij obtained in step 2 compute its mean

�m�

ij over all the B1 bootstrapped samples. Then, �m�

ij � cmij is a good

estimator of the unknown bias cmij �mij. The new bootstrap estimate

of mij is then cmB
ij = cmij � ( �m�

ij �cmij):
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Table 1: Bias (�rst row) and estimated bias (second row) for total of seats

for each one of 12 parties.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

-2.51 2.04 0.45 -0.85 -0.26 0.39 0.86 -0.08 0.19 -0.02 -0.11 -0.09

-0.45 0.48 0.01 0.03 -0.12 0.00 0.08 0.01 0.12 -0.04 -0.03 -0.09

We conducted Monte Carlo simulations to evaluate the performance of

this bias estimation method using data from the 2000 Spanish general elec-

tions (see Delicado and Udina (2001) for details of the electoral results and

poll data). There were K = 12 parties and C = 52 provinces (most of the

parties have no real presence in many provinces). We used a total sample size

of N =15,000 distributed among provinces by giving a �xed quota of 100 to

each one and apportioning the rest in proportion to the size of the electoral

census (These were the sizes used by some of the main electoral polls). Using

the results of the elections, we produced B0 =1,000 polls like S0 described in

step 1 above. We applied the above described procedure to each one of these

1,000 polls using B1 =1,000. Table 1 lists the average bias given by these

polls in the �rst row. This row numerically re
ects the same bias that can

be seen graphically in Figure 2. In the second row we list the average (over

B0 samples) of the bootstrap estimates of the bias. Note that the magnitude

of the bias is severely underestimated, but the direction of the estimation is

mostly correct: �gures in table 1 have a correlation of 0:91.

3.3 Bootstrapped con�dence intervals

Using a similar simulation setup, we computed for every simulated poll S0
(out of B0 = 1000 polls as described in step 1 above) a con�dence interval for

the composition of the parliament as follows, for a �xed nominal con�dence

level 1� �.

1. Let P0 be the parliament obtained from S0. Take B1 =1,000 parlia-

ments Pl (l = 1 : : : B1) obtained from samples like S1 in step 2 (section

3.2), compute distances dl from P0 to Pl and compute

d� = min

�
dl j#fdkjdk � dlg � (1� �)B1

�
:

2. Then we take all the parliaments that have dl � d� and for each party

we compute the interval that covers all the seats apportioned to that
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party in these parliaments. This �nally gives a set ofK intervals, which

we call the con�dence interval for the parliament P0 (CIP).

It is expected that at least a proportion of (1 � �) of these CIP that

are computed from all the simulated polls S0 e�ectively contain the real

parliament. Table 2 shows that this is really so for data from Spanish 2000

elections. We used the Euclidean distance (similar results were obtained for

other distances). We report Monte Carlo results for nominal con�dence levels

of 90% (a reasonable one) and 60%, which gives intervals of comparable width

to those of the main published pre-electoral polls (typical interval widths were

6; 7; 2; 1; 1; 2 for the six bigger parties). Note that none of these published

polls gave any statement about the coverage of the given intervals. Our

Monte Carlo studies, using data from the published polls, show a very wide

range of coverages (see Delicado and Udina (2000) for further details).

Table 2: E�ective coverage of parliament con�dence intervals computed by

bootstrap using simulated polls. The mean width of the intervals for bigger

parties is also reported. The width used in some of the main published

pre-electoral polls is comparable with the 60% nominal intervals.

Nominal coverage

(1� �)
Real coverage Mean interval width for 6 biggest parties

90% 92:7% 10:7 10:7 5:0 6:7 3:7 2:7

60% 62:3% 6:6 6:6 4:6 5:6 3:5 2:6

4 Choosing the sample size

Electoral polls generally choose the sample size for each province based on

the number of potential voters. In general, it is proportional to the number

of seats in the province. But two provinces with similar numbers of seats

can have di�erent numbers of contending parties and, even if the number

of parties is the same, they can di�er in the proportions of voters for each

party. From our point of view, when a pre-electoral poll is designed, regional

sample sizes should be assigned accordingly to the di�culty of estimation in

each electoral region.

Section 3 shows that the di�culty with estimating the number of seats in

a given electoral region depends jointly on the number of seats, the number

of parties and the exact values of the proportion of votes for the parties

involved. In this section we propose two ways for choosing the sample size for
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each region. The �rst one is derived from a probabilistic analysis. Geometric

arguments are the basis for the second one.

4.1 Probabilistic rule for choosing the sample size

A �rst approach to decide the sample size in a region is to choose n big

enough to ensure that, with a probability greater than (1 � �), the right

seats apportion is predicted.

If the real vote proportions are known or if some estimations of them

are available (from the results of a previous election, or from a pilot poll),

standard multivariate techniques can be used to compute the sample size

required to ensure a desired precision in seat estimation. The main idea

is as follows. The 1 � � fraction of estimated proportions that are closest

(in Mahalanobis distance) to the real proportions, form an ellipsoid which

volume decreases with n. So this ellipsoid would be completely included into

the right CSA-cell for large values of n.

The following theorem gives the rule expression (see a more precise state-

ment and a sketch of the proof in the Appendix A.2).

Theorem 1 Let p = (p1; : : : ; pK)
t the vector of population proportions and

p̂ the sample proportions obtained by simple random sampling with sample

size n. For x in the simplex
PK

i=1 xi = 1, let H(x) be the vector of seats

apportioned by the d'Hondt rule to x, and set H(p) = (h1; : : : ; hK). Let � be

the maximum proportion of polls with wrong seat estimation admitted. Then

taking

n � n� =
1

D(p)
�2K�1;�;

we have

Prob(H(p̂) = H(p)) � 1� �:

D(p) is the distance (measured by ��, a generalized inverse of the covariance

matrix � of p) from p to the frontier of its CSA-cell, and it is computed by

D(p) = min
i;j

(hj + 1)2p2i + h2i p
2
j � 2hi(hj + 1)pipj

(hj + 1)2(pi � p2i ) + h2i (pj � p2j) + 2hi(hj + 1)pipj
:

where minimization is done over all indices satisfying

1 � i � k; 1 � j � k; i 6= j; hi > 0:

In practice, the sample sizes for several regions have to be chosen jointly

and they must add up to a given N . Then � is calibrated iteratively in order

to have X
j

nj;� = N;
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where nj;� is the sample size obtained from the theorem for region cj. Observe

that N growths with (1� �).

As an example, we compute the sample size needed in Asturias in Spanish

election 2000. The proportions pi are known and we can see that it is a

very di�cult region to be predicted, as it is shown in Figure 6. To get the

right apportionment with probability 0:95, the sample size proposed by the

theorem is in the order of 300,000, clearly unreachable in practice.

As this example and the Monte Carlo studies (see section 4.2.1) point out,

the probabilistic rule presented above is very conservative in the sense that,

even in the worst proportions con�guration, it provides the right sample size

for having no errors (with probability greater than 1 � �). The price for

this exactness is that the proposed sample sizes can be enormous for di�cult

cases: regions with real proportions of voters near the CSA-cell frontier.

Next subsection proposes a more practical rule: it does not need pilot

estimation of proportions and proposes more realistic sample sizes.

4.2 Geometric rule for choosing the sample size

Two provinces with similar census sizes and even similar number of seats can

have a di�erent number of contending parties. This is the case in Barcelona

and Madrid in Spain, with 31 and 34 seats in the parliament, respectively:

while in Barcelona �ve parties get parliamentary representation, only three

do it in Madrid.

We take into account the number of seats and the number of parties to

measure the a priori di�culty of seat allocation estimation of a region. A

rule for choosing the sample size is based on this measure.

For K parties and M seats, the number of ways seat allocation can be

done is the number of ways to form K groups fromM identical objects. This

number is

NC(K;M) =

 
M +K � 1

M

!
:

So, for example, there are 52,360 possibilities in Barcelona, and only 630 in

Madrid. The total volume of the K-dimensional simplex is that of the solid

in Rd; d = K � 1, given by

Volume(fx 2 Rd : xi � 0 and
X

xi � 1g) =
1

d!
:

The average volume of a CSA-cell is A(K;M) = (d! NC(K;M))�1. Let

us compare this average volume with the volume covered by the sample

variability of the sample proportions.
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Fix a con�dence level 1�� and a sample size n. The ellipsoid containing

probability 1� � is

fx 2 Rd : xt��1

n x � k2g; k2 = �2d;�

where �n, the variance-covariance matrix of the proportions, is given by

�n = n�1 (�ij) ; �ii = pi(1� pi); �ij = �pipj (i; j = 1 : : : d; i 6= j)

The volume of the ellipsoid is (see Johnson-Wichern (1998), p. 132)

V (�; n) =
2�d=2

d�(d=2)
j�nj

1=2kd

which can be written as n�d=2V (�; 1). As long as the proportions for the

parties are unknown, we take a worst case approach: set pi = 1=K for all i.

In this framework, one could decide to take sample sizes in each province

so that the 1�� ellipsoid covers the volume of a single cell. This will ensure

roughly that the error in the seat estimation would be no greater than one

seat for each party in that province. But this rule can require a too large

total sample size. To avoid this problem, we propose the following sample

size allocation rule.

Geometric rule:

1. Fix �.

2. Set G, the number of contiguous cells to be covered, initially equal to

one.

3. Determine, for each province, a sample size ni so that

ni =

 
GgA(K;M)

V (�; 1)

!
�2=d

using as K the number of parties that have some chance of obtaining

at least one of theMi seats in the province (the exponent g is discussed

below).

4. Add up all the sample sizes N =
P
ni and if it is too big, increase G

or � by adjusting them to get the desired total sample size.

The exponent g needs to account for the dimensionality in each province.

We assign it so that doubling G the number of covered cells includes all the

contiguous cells to the initial one. This gives g = log(K � 1)!= log 2.
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Table 3: Performance of the geometric rule in several provinces with di�er-

ent number of parties and seats, and di�culty level (� = 0:05). At right,

percentage of polls (out of 2,000) that give respectively 0; 1; 2; or more than

2 misaportioned seats are listed in each case.

% of polls with wrong seats

Province # parties # seats ni 0 1 2 3+

Asturias 3 9 399 46.25 53.35 0.40 0.00

Badajoz 3 6 203 94.05 5.95 0.00 0.00

Barcelona 6 31 2892 73.65 25.90 0.45 0.00

Ceuta 2 1 16 92.00 8.00 0.00 0.00

Madrid 3 34 4565 90.40 9.60 0.00 0.00

Ourense 4 4 113 55.70 44.30 0.00 0.00

A surprising result from this geometric rule, con�rmed by Monte Carlo

results below, is that it is more di�cult to get the right seats apportion

when there are fewer parties in the game. Precisely, to get the right seats

(accepting one misapportioned seat, and � = 0:01) in a province with 30

seats and 3 contending parties, a sample size of 5,525 is needed. For the

same number of seats and 6 parties, the required sample size is just 3,712.

4.2.1 Monte Carlo results

We tested the geometric rule using data from Spanish 2000 election. Setting

G = 1 and � = 0:05 we simulate in each case B =2,000 samples using the real

results of the election. We list in Table 3 the probabilities of getting the right

seat apportionment (or misapportioning some seat) in a poll with sample

size computed by the geometric rule just described. Note that Asturias

and Ourense have results that made it really di�cult to get the right seat

distribution, as it can be seen in �gures 4 and 6. Badajoz and Madrid are

relatively easy, in the sense that the vote proportions point is quite centered

in its CSA-cell.

To compare the performance of the geometric rule in di�erent settings,

other Monte Carlo studies are reported in tables 4 and 5. In Table 4 number

of parties, number of seats and proportions of votes are chosen so that all

parties have equal proportions and equal number of votes. This corresponds

geometrically to having the point in the center of the central CSA-shell in the

simplex (refer to �gure 6). We take � = 0:05 and choose the sample size by

the geometric rule (with G = 1). Then we simulate B =5,000 samples from
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Table 4: Performance of sample size geometric rule in several arti�cial set-

tings with di�erent number of parties and seats (� = 0:05). Proportions of

votes are equal for the contending parties, so the point is in the center of a

CSA-cell. At right, percentage of polls (out of 5,000) that give respectively

0; 1; 2; or more than 2 misaportioned seats are listed in each case. Geometric

rule (G-rule) is in use, sample sizes given by the probabilistic or conservative

rule are listed in column C-rule.

% of polls with wrong seats

K M G-rule 0 1 2 3+ C-rule

10 30 2081 89.74 10.14 0.12 0.00 4213

6 30 2724 93.20 6.76 0.04 0.00 4041

5 30 2974 93.66 6.28 0.06 0.00 4022

5 15 860 94.02 5.98 0.00 0.00 1176

5 5 156 93.92 6.06 0.02 0.00 227

3 30 3594 94.90 5.10 0.00 0.00 3965

3 15 986 95.08 4.92 0.00 0.00 1090

3 6 203 94.92 5.08 0.00 0.00 228

Table 5: Number of parties and seats, and sample size are the same as

in Table 4. Proportions of votes are set here to locate the point near the

corner of its CSA-cell. At right, percentage of polls (out of 5,000) that give

respectively 0; 1; 2; or more than 2 misaportioned seats are listed in each case.

% of polls with wrong seats

K M Prop. of votes (seats) 0 1 2 3+

5 30 .35(11) .263(8) .240(8) .088(2) .059(1) 27.12 68.70 4.18 0.00

5 30 .208(7) .206(6) .205(6) .204(6) .177(5) 27.24 72.46 0.30 0.00

5 15 .212(4) .211(3) .210(3) .209(3) .158(2) 20.48 79.00 0.52 0.00

5 5 .224(2) .223(1) .221(1) .220(1) .110(0) 18.54 80.84 0.62 0.00

3 30 .345(11) .343(10) .312(9) 39.46 60.44 0.10 0.00

3 15 .354(6) .352(5) .294(4) 34.98 64.88 0.14 0.00

3 5 .336(2) .333(2) .331(1) 32.30 67.52 0.18 0.00
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the appropriate multinomial distribution. Since the point is in the center,

we expect 100(1��)% of the samples giving the correct seat apportionment,

and this is con�rmed by the results of the simulation. For each setting, we

also report in Table 4 the sample size given by the probabilistic or conserva-

tive rule (see 4.1). Since the point is in the center of the CSA-cell, result are

similar. Note that when number of parties (dimensionality of the simplex)

increases, C-rule gives sample sizes too big. This is mostly due to the well

known sphere e�ect associated with the curse of dimensionality : the propor-

tion of the volume of a cube �lled by the inscribed sphere decreases when

dimensionality increases.

In Table 5 we choose the proportions of votes for the parties so that the

points are located very near a corner of the CSA-cell. We list in the table for

each case the proportions of votes and the number of seats for each party. The

�rst case corresponds to a vertex of a cell close to the border of the simplex,

while the rest correspond to vertices of the central CSA-cell. Sample sizes

are computed by the geometric rule as before. We do not report here the

samples sizes given by the conservative rule: they would be really unrealistic.

As before, we simulate B =5,000 samples and we report the percentage of

samples that give the correct seat apportionment, or that give 1, 2, or more

that 2 incorrectly apportioned seats. Simulation results are satisfactory.

5 Concluding remarks

We have presented graphical tools to evaluate the results of pre-electoral

polls. The problem of bias in allocation seats estimation has been pointed

out as an essential one. The graphical study of the bias problem indicates

that the di�culty in estimating the seats allocation in a province depends

on several parameters. When all them are taken into account, two di�erent

rules for choosing the sample size are obtained, in the hope they reduce the

estimation bias. The second rule is the most advisable, as a simulation study

indicates.
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A Mathematical details

A.1 Proportional rules

Let K parties be competing for M seats (in a single province). Let � be the

minimum proportion to obtain any seat. Let (f1; f2; : : : ; fK) be the propor-

tion of votes obtained respectively by the parties. We have

0 � fi � 1; (i = 1; : : : ; K);
KX
i=1

fi = 1:

Let dj; j = 1 : : :M , be a non-decreasing sequence. De�ne the quotients qi;j,

for i = 1; : : : ; K and j = 1; : : : ;M by

If fi < �; qi;j = 0

If fi � �; qi;j = fi=dj

A quotient qi;j deserves a seat if and only if it is one of the M greatest

among all the KM quotients, or equivalently, if there are more than M(K �
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M) quotients smaller than itself3. So the rule is an application S from the

simplex

ff 2 RK j
KX
i=1

fi � 1g

onto the discrete set of possible parliamentary con�gurations

fm 2 ZKj
KX
j=1

mj =Mg

de�ned by

Sd(f1; : : : ; fK) = (m1; : : : ; mK)()

8i = 1; : : :K; mi = max fj = 1; : : : ;M jQ(i; j) > KN �Ng (1)

where Q(i; j) = #fqk;l < qi;j : k = 1; : : : ; K; l = 1; : : : ;Mg

Note that Q(i; j) is the number of quotients less than qi;j. The de�nition

can be written in the following non-closed form that may be more useful:

Sd(f1; : : : ; fK) = (m1; : : : ; mK)()

8i; j 2 f1; : : : ; Kg; i 6= j; mi = 0 or
fi

dmi

>
fj

dmj+1

(2)

which states that the last quotient of party i that got a seat must be bigger

than the �rst quotient of party j that does not got one.

With this de�nition it is easy to understand that the regions with constant

seat allocation (which we call CSA-cells) are limited by hyper-planes and thus

are convex polyhedra. Each one is limited by the inequalities appearing in

(2), up to K(K � 1) of them can be e�ective, and in the case mi = 0 the

e�ective inequality is simply the boundary of the simplex. We have seen in

�gures 3, 4, and 6 examples of such regions in the plane, when K = 3.

A.2 Sample size needed to get the right seats

Following notation in theorem 1, p̂ is n�1 times a multinomial random vari-

able, p̂ � n�1Mk(n; p1; : : : ; pk) that can be approximated, for n big enough,

by a multivariate normal with mean p = (p1; : : : ; pk)
t and k � k covariance

matrix n�1�, where � = Diag(p)� ppt.

3
Ties among quotients are a set of very small probability. In such improbable cases,

electoral laws usually give the seat to the party with greater absolute number of votes

(and by lottery if these are equal).
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� has, in general, rank K�1. If �1; : : : ; �K�1 are the non-zero eigenvalues

of �, it is possible to �nd a K � (K � 1) matrix C with CtC = IK�1 such

that

�� = C Diag(�1; : : : ; �K�1)
�1Ct

is a generalized inverse of �, i. e., it satis�es ���� = � (see Mardia, Kent,

and Bibby (1979)).

�� de�nes a metric in the simplex in RK. If we consider a hyperplane

xtb = �, it can be shown that the probability that p and p̂ are on the same

side of the hyperplane is greater than

P ((p̂� p)tn��(p̂� p) � D�) = P (�2K�1 � D�)

where D� is the distance from p to the hyperplane, given by

D� = n
(� � ptb)2

bt�b
:

In our problem, the hyperplanes are given by (see (2) above)

pi

hi
=

pj

hj + 1
() (hj + 1)pi � hipj = 0

and we have

D� = n
(hj + 1)2p2i + h2i p

2
j � 2hi(hj + 1)pipj

(hj + 1)2(pi � p2i ) + h2i (pj � p2j) + 2hi(hj + 1)pipj
:

If we want all the inequalities to hold, we need to take the minimum of

these distances, as stated in theorem 1.
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