
Implementing interactive computing in an
object-oriented environment

Frederic Udina <udina@upf.es>∗

Abstract

Statistical computing when input/output is driven by a Graphical
User Interface is considered. A proposal is made for automatic con-
trol of computational flow to ensure that only strictly required com-
putations are actually carried on. The computational flow is mod-
eled by a directed graph for implementation in any object-oriented
programming language with symbolic manipulation capabilities. A
complete implementation example is presented to compute and dis-
play frequency based piecewise linear density estimators such as his-
tograms or frequency polygons.

Controlling computation flow in classical programs is not a difficult
task: some conditional or case statements would do the job in most cases.
When user interaction is needed, the program prompts for it, then it waits
for an answer, processes the response and produces output.

If we consider statistical computing in a graphical user interface (GUI)
environment, things are very different. The user can decide at any moment
to change any of the quantities involved in the computation. (S)he can also
decide on the desired output: what lines, graphs or windows are to be
shown or not. In some cases, the user can decide to change a setting while
an animation is running. It can be difficult to know in advance which of
the intermediate results are really needed and exactly when they will be
needed. Some results can be required by the system when refreshing a

∗Departament d’Economia i Empresa, Universitat Pompeu Fabra. Ramon Trias Far-
gas, 25. 08005 Barcelona, SPAIN. Author’s work was supported by Spanish DGES grant
PB96-0300.

1

window, far beyond the programmer’s control. Some other results may
not be needed at all because the window displaying them is closed or not
visible at that moment. The algorithm might work efficiently even when
only some intermediate quantity is required, say, by another program that
uses it. In general, the whole or some parts of the computation can be
expensive and the user wants the fastest possible response to mouse or
keyboard actions.

Our goal is thus to discuss a mechanism such that:

• Flow of the computation is automatically driven, so the program-
mer need not write repetitive parts of the program to control what
quantities must be computed or are up to date at a given moment.

• The user has freedom to modify the values under his or her control
at any moment.

• Only needed quantities are computed and then stored to avoid re-
computation until they must change.

The flow of the computation can be usually described by a directed
graph. An arrow going from some quantity to another means that any
change in the origin implies that the destination must be updated. Figure
1 show a simple example. The graph in the figure shows that if input I1
changes, both its descendants A1 and A3 need to be updated, but if only
output O2 is to be displayed, then only A3 must actually be computed.
This way changes go forward. But computation goes backward: the ac-
tual computation always start when some output is required. Thus the
flow goes backwards through the tree looking for the needed intermedi-
ate results which may or may not have changed. Note that not every arrow
needs to be actually followed backwards: some user controlled flag, like
A6, can decide whether A4 or A5 is needed to update O2.

We can consider three types of quantities involved in the computation:
input, intermediate and output quantities. Let SI be the set of parameters
directly modifiable by the user. This means that at any given moment
the user has access to some keyboard command, menu, dialog window,
slider, or other interface mechanism which can give a new value to one
or several of these input parameters. Let SO be the set of output variables
or devices of the computation process. They can be numbers or arrays
representing lines or other parts of a graph. Finally, let SA be the set of

2

I1
A1 A2 01

A3 A5 02

A6I2
A4

Figure 1: A directed graph to represent the flow of computation. Changes
go forward, computation goes backward.

all other variables involved in the computation and not included in the
previous sets. In the graphs, we show input variables in ovals and output
variables in rectangles.

Let G be the graph that describes the flow of the computation, i.e., the
set of all pairs (a, b) where a and b are variables in SI ∪ SA ∪ SO and b
depends on a in the sense defined above. Let us write G0 for the set of
variables a such that a pair (a, b) exist in G. Usually, G0 = SI∪ SA. Initially,
no allowance is made for cycles in the graph.

1 Implementation

Although any computation can be implemented using almost any pro-
gramming language, it is worth using an object-oriented programming
language with symbolic manipulation capabilities.

We use XLISP-STAT, a Lisp dialect with statistical and graphical ad-
ditions (TIERNEY[1990]). Like in any other object-oriented environment,
XLISP-STAT objects have slots and methods (in terms of non object-oriented
programming these would be variables and functions, but slots and meth-
ods are owned by the object, and so they can differ from one object to
another). Any one of the quantities, say Si, described above will corre-
spond both to a slot and a method . The slot can contain either the value for
Si or a symbol like needs-updating, flagging that some of the quantities
Si depends on have changed and so Si needs to be recomputed to be up
to date. Note that Lisp variables (and slots) are not typed and thus they
can contain either any kind of value or a symbol. The method correspond-
ing to Si, if called with a value as argument, sets the slot to that value. If
called with no arguments, it returns a valid value for Si: if Si needs to be

3

updated, the method does that.
The rules to be followed in programming the computation are:

• Carefully define graph G to drive the computation flow, and trans-
late it to a dependency-tree: this is a list formed by items in the
form (a, b1, . . . , bk) where bi are all quantities that directly depend on
a, and there is one and only one such item for every quantity a ∈ G0.

• A specific method :propagate-changes is used to mark all the
slots that depend on the one being changed with the specific symbol
needs-updating.

• Changes to a slot are always done through the corresponding method.
This method should call :propagate-changes.

• The same method, when called with no arguments, returns the value
for the slot unless it is needs-updating, in which case it is recom-
puted, stored and returned.

This way, all the variables of interest are contained in slots of an object,
and they will always be accessed by means of an accessor method similar
to the one in Figure 2.

When the method :var-name is called without arguments, it checks
the current value of the slot var-name. If the special symbol needs-
updating is found there, some routine to recompute the variable value is
run and the result is stored and returned. Otherwise, just the value found
is returned. If the method is called with an argument, this value is stored
in the slot. As a side effect, all the variables that depend on the variable
being changed are marked with needs-updating by a :propagate-
changes method such as the one in Figure 3. In this method we assume
that the dependence tree is not very big and that the propagation mech-
anism is fast. Otherwise, some time can be saved by checking if the slot
is already marked as needs-updating and skipping its subtree in that
case.

A dependence-tree as described before is needed to propagate changes.
For the example in Figure 1, the tree will be installed in its own slot by a
call as shown in Figure 4

4

(defmeth some-object :var-name
(&optional (value nil value-set))

(if value-set ;then store it in ’var-name slot
(progn

;;set all dependants to ’needs-updating
(send self :propagate-changes ’var-name)
;; set the given value
(slot-value ’var-name value))

;;not value-set. If needed, it must be recomputed
(when (eq ’needs-updating (slot-value ’var-name))

;; set the slot value to the result
;; of the updating computation
(slot-value ’var-name

(call-to-compute-it))))
;;in any case, we return the slot contents
(slot-value ’var-name))

Figure 2: The standard method to access a slot and propagate the changes.
Only the third line from the bottom must be tailored for each variable.

(defmeth some-object :propagate-changes (symb)
"Will mark as changed all the slots that depend on SYMB
following the dependence tree"
(let ((seq (find symb (slot-value ’dependence-tree)

:key #’first)))
(when seq ; if found, seq is the list of items

(mapcar #’(lambda
(slo)
(slot-value slo ’needs-updating)
(send self :propagate-changes slo))

(cdr seq))))) ; and mark it all

Figure 3: The method to propagate changes.

5

(send some-object :slot-value ’dependence-tree
’((i1 a1 a3)
(i2 a3 a4)
(a1 a2)
(a2 o1)
(a3 a4 a5)
(a5 o2)
(a4 o2)
(a6 o2)))

Figure 4: The call to install the dependence tree in its slot.

User input and graphical output

User input via a graphical interface will arrive through the keyboard, a
dialog window or any other GUI mechanism, at any time, requesting a
change to a quantity or parameter. To introduce the change into the com-
putation flow a call such as

(send my-obj :i1 a-new-value)
is used. This way all the dependent variables will be marked as out of
date. In most cases this will be followed by a call to a redrawing method,
usually :redraw-content. When something (an output routine or some
part of the program answering to a :redraw-content call) asks for o1
by using

(send my-obj :o1),
only a1, a2 and a3 will be recomputed, while a4 and a5 will remain with
the ’needs-updating label until o2 is requested.

Note that some of the output variables can be boolean flags that are
false (or needs-updating) if the window is out of date and true if ev-
erything has already been updated. In such a case, simply asking for the
value of the slot can return true if everything is OK, and nothing would
be recomputed, but if it’s not true, it will be needs-updating and all the
information needed to draw the window will be recomputed.

Finally, the program needs to provide for reaction to requests from the
window system. If the window gets uncovered, for example, the window
manager will send a :redraw-content request. This is the same request
the program should send to be sure that all graphic output is up to date.

6

The :redraw-content method of the involved window(s) should then
be modified in the following way: before calling the standard method,
check if the window must be updated or not. If yes, call the appropiate
slots to recompute it and produce the effective graphical output.

2 A complete example

As an example, we analyze fde.lsp, a lisp program that implements rich
histograms as XLISP-STAT objects.1

After loading the code file with
(load "fde")

a rich histogram window is created by
(make-histogram data)

where data is a list of numbers. The call (fde-demo) can be used for
demo purposes. It will create a fde object with data from SIMONOFF[1997]
giving the duration of the Old Faithful geyser eruptions in August 1978
and 1979 (originally collected by Sandy Weisberg). The interaction with
the window is usually done through the window menu (see Figure 5) or
via keyboard shortcuts (see Figure 6).

Several frequency based estimators are supported: histograms, hol-
low histograms, frequency polygon (see SCOTT[1992]), edge frequency
polygon (JONES et al.[1998]), piecewise linear estimator (see BEIRLANT,
BERLINET AND GYÖRFI[1998]) are all briefly described in Section 3. Using
a menu item, the user decides which estimators (s)he wants to see and the
choice is stored in what-to-show. Then, when the window is to be re-
drawn, some bin-counts are needed and computed from the data, using
the default bin-width and anchor-point. The user can then change
these values using a slider accessible from a menu item again, or using the
keyboard. The effect of changing the anchor point (see SIMONOFF AND
UDINA[1997] and Section 3) can be easily visualized through an anima-
tion (available from the menu). Note that while the animation is running,
all the input parameters can be changed using the keyboard or any menu
item. The animation is implemented easily using the :do-idle feature
of XLISP-STAT graphic windows (see source file). This means that while

1The full code and some examples of using it is available in
http://libiya.upf.es/soft

7

Mouse mode Either ’Show coordinates’ or ’Zoom in’.
To zoom-out again use ’Rescale plot’.

Rescale plot Use a new scale in the plot so all lines are
visible.

Options Standard XLISP-STAT Options menu.

Show info Show some information about the data
set and the histogram cells.

Stability Index Compute the Simonoff-Udina stability in-
dex.

Stability index
plot

Compute the index for a range of bin
widths and show a plot. Indices are
shown for the edge frequency polygon
and the regular histogram.

Assess the Index
value

Assess the stability of the histogram
through a bootstrap-like method.

Bin control Open a dialog with two sliders to control
bin width and anchor shift.

What to show Open a dialog to choose what estima-
tors are to be shown in the window.
Also data, simple box-plot and density
shadow are available.

Animate Perform animation of the anchor shifting
effect.

Figure 5: Menu items available in a FDE window.

+/- Increase/Decrease the bin width
l/r Move the anchor to the left/right
a Adjust the axis scales to the current state
d Show/hide data points

Figure 6: Keyboard shortcuts in a FDE window.

8

the animation is running, the user has access to the menu or the keyboard
shortcuts for tuning up any of the animation parameters.

All quantities and flags involved are represented as instance slots in
the main object, a fde-proto descendant, and are listed in Figure 7. The
dependence tree is stored in a shared slot because all instances use the
same tree. The graphics window is actually a separated object. The reason
for this is to make it easier for a single object to perform all computations,
while the window object is created only if display is needed. More detail
can be found in the source listing.

The computation flow is shown in a directed graph in Figure 8. The
input quantities are shown in an oval frame, the output ones in a rectan-
gular frame. Label WuD is a flag which shows if the window is up to date
or otherwise needs updating. When a variable is changed, the change
is transmitted following the arrows in the graph. When an output is re-
quired, computation flow goes backward through the graph, searching
just for the required values to complete the computation. Note that not
every arrow is followed backwards: slot what-to-show is looked for to
know what lines really need to be computed.

In the actual implementation a couple of macros are used to simplify
method writing and reading. The macro

defmeth-fde-proto-accessor-changes
(see Figure 9) produces a defmeth call very similar to the one shown in Fig-
ure 2. There is a second macro in the source file used to produce accessors
that admit an optional keyword argument :draw defaulting to nil. If it
is non-nil, the change in the slot will force redrawing the object’s window
(provided it is open).

2.1 Using fde objects from Lisp

Any Lisp program can use fde objects in a very efficient way, given how
they are implemented. As an example, a sequence call such as the follow-
ing would give the desired results computing just the required quantities
but nothing else.

9

data
data-summary
scale-estimate
x-range

The data and some statistics to describe
it, the range to be displayed.

bin-width
bw-ends

Bin width and the minimum and maxi-
mum value for it.

bin-edges
bin-counts
long-bin-counts
half-bin-counts

The bin edges list and several ways to
count the data in each bin.

anchor-base
anchor-shift

To determine the anchor, the position of
the first edge.

boxplot-lines
...
edgpoly-lines

Several kinds of lines or graphical out-
put to be displayed, depending on user
choice.

stability-index An index to measure shape change for
the histogram.

density
density-lines

A density to be matched to or compared
with.

what-to-show y-
scale

A list describing what elements must ap-
pear in the window and a selector for the
vertical scale to use.

window-up-to-
date

A flag showing if the window contents
are up to date.

Figure 7: The quantities involved in histogram computation.

10

data

data-summary

x-range

bin-edges

half-cnts pieclin

bin-cnts all-lines

long-cnts

stab-index

density

dens-lines

box-plot-lines

bw-ends

scale-estimate

bin-width

anchor-base anchor-shift

what-to-show

y-scale

WuD

Figure 8: A directed graph to represent the flow of computation. Changes
go forward, computation goes backward. Input quantities are shown in
oval frames, the output ones in rectangular frames. WuD stands for the
Window up to date flag.

(defmacro defmeth-fde-proto-accessor-changes
(keyword help-string computation)

(let ((sym (find-symbol (symbol-name keyword))))
‘(defmeth fde-proto

,keyword
(&optional (value nil vset))
,help-string
(if vset (progn

(send self :mark-changed ’,sym)
(setf (slot-value ’,sym) value))

(when (eq ’must-compute (slot-value ’,sym))
(setf (slot-value ’,sym) ,computation)))

(slot-value ’,sym))))

Figure 9: The macro used to produce standard accessors. The relevant
argument is computation, a list of lisp expressions to be evaluated to
compute the value of the quantity corresponding to symbol symb.

11

(require "fde")
(def myhist (make-histogram my-data :show nil))
(def stabind (send myhist :stability-index))
(def mylins (send myhist :edgpoly-lines))
(undef ’myhist)

After running this code, the variable stabind will contain the sta-
bility index of the given data histogram (for the default bin-width) and
frequency polygon. mylins will contain the segments to build the edge
frequency estimator. Use of the last line is recommended to send used
memory space which is no longer needed to the garbage collector.

The construction function make-histogramhas mandatory argument
data. It can be followed by any of the following keyword arguments in
the usual keyword/value pair form.

:title
:bin-width
:anchor-base
:anchor-shift
:x-range
:y-scale
:density
:what-to-show

These optional keyword arguments have
the same meaning as the corresponding
methods, see next listing.

:show
t if a window must be created to show the
estimators. Default is t.

:debug t if debugging information is to be printed.
Default is nil.

Here follows the list of the fde-proto methods that could be of inter-
est for a Lisp program. Some of these methods have the optional keyword
argument :draw. It defaults to nil. If a non-nil value is given, window
redrawing is forced.

:isnew (...)
Creator for fde object. Creation by using the function make-
histogram is recommended. Argumentss are similar to those
described above for that function.

:title (&optional title)

Gets or sets a title string for the object and the window.

12

:data (&optional data & key (draw nil))

Gets current data or set new data.
:bin-width (&optional value & key (draw nil))

Gets or sets bin width. If :draw is not nil, force redrawing.
:data-summary

Returns a list with the data five numbers (min, quartiles and
max), data size, mean and standard deviation.

:scale-estimate
Computes a robust estimate for the scale following JANSSEN et
al.[1995]. It’s useful to replace the standard deviation in multi-
modal densities, for example.

:x-range (&optional interval & key (draw nil))
Sets or gets the estimation range. If an interval is given, it must
be a two numbers list, covering the whole data range.

:bw-ends (&optional interval)
Sets or gets the interval where the bin width is confined. If an
interval is given, it must be a two numbers list.

:anchor-base
Sets or gets the reference for the anchor: the position of the first
bin when anchor-shift is zero. If it is ’data-based, the min-
imum of the data will be used. It can also be a number, the known
minimum value possible for data values.

:anchor-shift (&optional value &key (draw nil))
Sets or gets a value in [0,1) that is the fraction of the bin width to
be subtracted from the anchor-base to put the first bin edge there.

:stability-index
Computes the stability index for the histogram as defined in SI-
MONOFF AND UDINA[1997] (see Section 3).

:assess-index-value
Run a bootstrap-like simulation to assess the current stability in-
dex. See details in Section 3.

:bin-edges
Sets or gets a list with the bin edges position. Bin edges must be
equally spaced.

:bin-counts

Returns a list with the counts for the bins.
:bin-frequencies

13

Returns a list with the bin’s relative frequencies.
:density (&optional (value nil vset) (numargs 1))

Gets or sets a density function to be drawn in the window. The
function can have 1, 2, or 3 arguments, first is x value, second is
data mean, third is data standard deviation. If argument is the
symbol ’normal, an adjusted normal density is installed.

:y-scale (&optional value &key (draw nil))
Gets or sets the vertical axis scale. Can be any of ’density,
’frequency or ’count.

:histo-lines :hohisto-lines :piecelin-lines
:fpoly-lines :edgpoly-lines

These methods return a list of pairs (x, y), the points to be joined
to draw lines representing respectively a regular histogram, a
hollow histogram, a piecewise linear estimator, a frequency poly-
gon or an edge frequency polygon. The result can be put as ar-
gument in the :add-lines method of a graph-proto, except
for :piece-lines. In this case a list of lines is returned.

:density-lines :boxplot-lines
These methods return a list of (x, y) pairs, the points to be joined
to draw lines representing a normal density fitted to data, or a
simple box-plot.

:what-to-show (&optional list-of-estimators)
Sets or gets a list of the estimators to be shown in the window.
list-of-estimators must be a sublist of (:histo-lines
:hohisto-lines :fpoly-lines :edgpoly-lines
:piecelin-lines :data :boxplot-lines :density-
lines).

:add-to-show (what &key (remove nil) (draw t))
Adds to (or removes from when :remove is not-nil) the given
symbols to/from the slot what-to-show, see above.

:have-window
Creates a window to display the estimators, if it does not already
exist.

:to-window (&rest args)
With no args, returns the window object where estimators are
being displayed. It is a graph-protodescendant. Supplied args
will be sent to it.

:redraw-window

14

The window will be redrawn after updating all the slots that con-
tain needs-updating.

3 Frequency based estimators, brief summary

Let {x1, . . . , xN} be a set of i.i.d. data values with common density function
f(x). A fixed bin width histogram is determined by an anchor point b1
(b1 ≤ x(1) and a bin-width h, (h ≥ 0). The bin edges are then

bj = b1 + (j − 1) ∗ h, j = 1, . . . , K

where K is such that bK > x(N). The histogram estimate of the underlying
density within a given bin is

f̂(x) =
nj

Nh
, x ∈ [bj , bj+1),

where nj is the number of observations falling in the jth bin [bj , bj+1).
When needed, we consider n0 = nK+i ≡ 0, i > 0 as the counts of the
adjacent empty bins.

The simplest improvement to the histogram is the frequency polygon,
the linear interpolant of histogram heights at the bin centers. The fre-
quency polygon has the form

f̂FP (x) = (Nh)−1
[
ni + ni+1

2
+

(
ni+1 − ni

h

)
(x − bi+1)

]
,

x ∈ [bi+1 − h/2, bi+1 + h/2], i = 0, . . . , K.

An alternative to the frequency polygon, the edge frequency polygon,
was introduced by JONES et al.[1998], and has the form

f̂EF (x) = (2Nh)−1

[
ni+1 + 2ni + ni−1

2
+

(
ni+1 − ni−1

h

)
(x − bi+1 + h/2)

]
,

x ∈ [bi, bi+1], i = 1, . . . , K.

This estimate is the linear interpolant of the averages of two adjacent bin
heights at right bin edges, and will therefore be called the average fre-
quency polygon here.

15

A more complicated estimator, the linearly binned frequency polygon,
replaces the cell counts ni in (5.1) with linear bin counts

�i =
n∑

i=1

(1 − h−1|xj − bi − h/2|)+

where + subscript denotes positive part (JONES AND LOTWICK[1983], JONES[1989]).
This can be seen as each data point splitting its unit mass between the two
nearest bin centers, in inverse proportion to the distances to them. The
estimator is a discretized kernel estimator with triangular kernel function
JONES[1989], and can achieve 5.8% lower optimal AMISE than f̂FP .

To avoid the difficulty of extending these estimators to higher dimen-
sions, BEIRLANT, BERLINET AND GYÖRFI[1998] introduced the piecewise
linear estimator: it is obtained by dividing each bin in two halves, and
joining the frequencies of each half at the half-bin centers by a line, the
line covering the whole bin. Despite its good theoretical properties, it pro-
duces nasty results for small samples: estimates are not necessarily posi-
tive or continuous.

Bin width

The bin width h acts as a smoothing parameter, as it controls the degree of
smoothness of the estimate, with larger values of h resulting in histograms
with a smoother appearance. All density estimators include some form of
smoothing parameter, and a good deal of research has focused on choosing
it for different estimators, often based on an assessment of accuracy using
the integrated squared error of the estimator,

ISE =
∫ ∞

−∞
[f̂(x) − f(x)]2dx,

and its expected value, mean integrated squared error (MISE).
The frequency polygon is superior to the histogram in terms of MISE,

achieving the rate AMISE = O(N−4/5) (taking h = O(N−1/5), rather than
the optimal O(N−1/3) asymptotic rate for histograms), and this improved
accuracy carries over to small samples (SIMONOFF AND HURVICH[1993]),
but its appearance (in terms of modes, bumps and dips) is identical to
that of the histogram, and it therefore has the identical anchor stability
properties for given h. The edge frequency polygon can achieve 11.5%
smaller optimal AMISE.

16

Automatic (data based) choice of bin width has been studied by many
authors. We refer to WAND[1997] for a complete study of plug-in type se-
lectors. In fde we only implement the basic normal reference bin as defined
by SCOTT[1979]:

hNR = 3.5σ̂−1/3

where we use as σ̂ the scale estimate defined by JANSSEN et al.[1995].

Anchor position and shifting

Asymptotic analysis shows that anchor position of a histogram has a lower
order asymptotic effect on MISE compared with the bin width, and can
therefore be ignored. Despite this, from a practical point of view, shift-
ing the bin edges by changing the anchor position can have an impor-
tant effect on the appearance of the resultant histogram for finite sam-
ples, changing the uni/multimodality or symmetry aspect, for example.
Many authors have focused on this as one of the biggest drawbacks of
using the histogram (see, e.g., FISHER[1989]; HÄRDLE[1991], Section 1.4;
HÄRDLE AND SCOTT[1992]; IZENMAN[1991]; SAMIUDDIN, JONES AND
EL-SAYYAD[1993]; SCOTT[1992], Section 4.3; SILVERMAN[1986], Section
2.2).

By shifting the anchor or the bin edges we mean replacing the fixed ini-
tial point b1 by ab − s ∗ h where ab is the anchor base (which can be any
number ab ≤ x(1), often taken as ab = x(1)) and s ∈ [0, 1) is the shift factor.

The literature contains little systematic examination of anchor position
effects. In a Monte Carlo simulation study, SIMONOFF[1995] found that
the ISE (which can be termed quantitative accuracy) of the histogram es-
timate is insensitive to anchor position, unless a discontinuity (or near dis-
continuity) of the density is crossed by a bin (that is, if the discontinuity
occurs inside a bin rather than at a bin edge; see also SCOTT[1992], pp. 65–
66). On the other hand, the appearance of histograms (as quantified by
the number of observed modes, a measure of qualitative accuracy) can be
very sensitive to anchor position. SCOTT[1992] (p. 111), in the context of
the frequency polygon, noted that the anchor position can be thought of
as a nuisance parameter, and suggested choosing it for a given bin width
to make the resultant estimate as smooth as possible.

17

Stability index

SIMONOFF AND UDINA[1997] agree that the anchor position is a nuisance
parameter. Rather than pick a particular (arbitrary) value for that parame-
ter, however, they propose constructing a measure to assess how sensitive
the appearance of the histogram is to any possible choice. That is, the
measure is a function of the data and h, and not of any particular anchor
choice. This is the stability index implemented in fde.

The stability index ranges in [0, 1] and can be computed for any of the
bin frequencies based estimators described so far.

If the stability index is high, i.e. close to 1, the appearance of the
histogram does not change very much for a given h as the anchor posi-
tion changes, and thus the analyst is free to choose whatever anchor (s)he
wishes, without worrying about the effect of that choice. However, if the
stability index is low, i.e. close to 0, the appearance is sensitive to anchor
position, the impressions gained from a histogram using any particular
choice cannot be trusted since a different choice could give a very differ-
ent impression.

It is important to note that the stability measure is not a measure of
the accuracy of the histogram as an estimate of the true density f , but
rather of the consistency of the representation of that density as anchor
position is changed. That is, a stable bin width is not necessarily one that
gives an accurate impression of the true density, but rather one where the
impressions do not change very much with anchor position. Thus, a data
analyst would use the index as a secondary tool, after first choosing the
bin width to provide an accurate impression of the true density (based on
ISE, or some other measure). If the chosen bin width is stable, an anchor
position is chosen, and the estimate is constructed.

If the bin width is unstable, however, any choice of anchor position is
dangerous. Instead, a different, more stable, bin width should be chosen.
If the new bin width is close to the original one, it is likely that the his-
togram is as accurate as one based on the original choice, and little is lost;
but if there are no stable choices near the original choice, it is likely that no
histogram will be satisfactory, and a different density estimator should be
used.

In fde we provide a menu item to compute the index for a range of bin
widths. This gives the analyst a useful tool for inspecting the graphical
output and to choose a bin width that is both reasonable from the data

18

analysis point of view and has a good (high) index value.
As a general rule, stability of the considered estimators (for a given bin

width) is higher for the edge frequency estimator, less for the frequency
polygon and the histogram (which have the same appearance and thus
the same stability index) and least for the piecewise linear estimate.

We refer to SIMONOFF AND UDINA[1997] for the definition of the sta-
bility index. It consists in measuring the shape of each of the many his-
tograms obtained by shifting the anchor position and then comparing the
(dis)similarity of the numbers obtained by a Gini type index (see MAR-
SHALL AND OLKIN[1979]).

References

BEIRLANT, J.; BERLINET, A.; GYÖRFI, L. (1998) On Piecewise Linear Den-
sity Estimators. Statistica Nederlandica. to appear.

FISHER, N.I. (1989) Smoothing a sample of circular data. J. Structural
Geology. 11, 775-778.

HÄRDLE W. (1991) Smoothing techniques with Implementation in S. Springer–
Verlag, New York.

HÄRDLE, W.; SCOTT, D. W. (1992) Smoothing by Weighted Averaging of
Rounded Points. Computational Statistics. 7, 97–128.

IZENMAN, A. J. (1991) Recent Development in Nonparametric Density
Estimation. Journal of the American Statistical Association. 86, 205-224.

JANSSEN, P.; MARRON, J.S.; VERAVERBEKE, N.; SARLE, W. (1995) Scale
measures for bandwidth selection. Journal of Nonparametric Statistics. 5,
359-380.

JONES, M. C. (1989) Discretized and interpolated Kernel Density Esti-
mates. Journal of the American Statistical Association. 84, 733-740.

JONES, M. C.; LOTWICK, H.W. (1983) On the errors involved in comput-
ing the empirical characteristic function. Journal of Statistical Computation
and Simulation. 17, 133-149.

19

JONES, M. C.; SAMIUDDIN, M.; AL-HARBEY, A.H.; MAATOUK, T.A.H.
(1998) The Edge Frequency Polygon. Biometrika. 85, 235-9.

MARSHALL, A.W.; OLKIN, I. (1979) Inequalities: theory of majorization and
its applications. Academic Press, New York.

SAMIUDDIN, M.; JONES, M.C.; EL-SAYYAD, G.M. (1993) On bin–based
density estimation. Journal of Statistical Computation and Simulation. 47,
241–252.

SCOTT, D. W. (1979) On optimal and data-based histograms. Biometrika.
66, 605–610.

SCOTT, D. W. (1992) Multivariate Density Estimation: theory, practice and
visualization. John Wiley, New York.

SILVERMAN, B. W. (1986) Density Estimation for Statistics and Data Analy-
sis. Chapman and Hall, London, 1986.

SIMONOFF, J. S. (1995) The anchor position of histograms and frequency
polygons: quantitative and qualitative smoothing. Communications in
Statistics – Simulation and Computation. 24, 691–710.

SIMONOFF, J. S. (1997) Smoothing methods in Statistics. Springer-Verlag,
New York.

SIMONOFF, J. S.; HURVICH, C. M. (1993) A Study of the Effectiveness of
simple density estimation methods. Computational Statistics. 8, 259–278.

SIMONOFF, J. S.; UDINA, F. (1997) Measuring the stability of histogram
appearance when the anchor position is changed. Computational Statistics
and Data Analysis. 23, 335–353.

TIERNEY, L. (1990) LISP-STAT: An Object Oriented Environment for Statisti-
cal Computing and Dynamic Graphics. John Wiley and Sons, New York.

WAND, M. P. (1997) Data-based Choice of Histogram Bin Width. The
American Statistician. 51, 59–64.

20

